

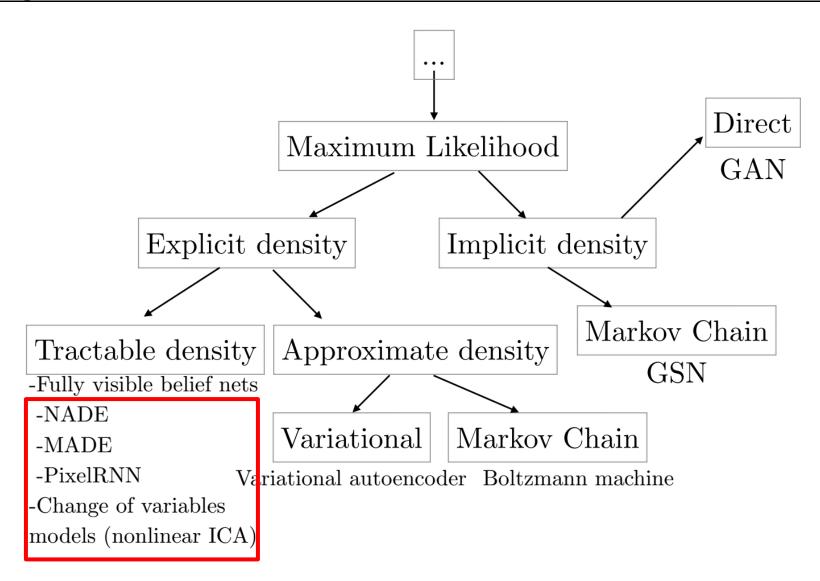
Lecture 11: Advanced Generative Models

Efstratios Gavves

Lecture overview

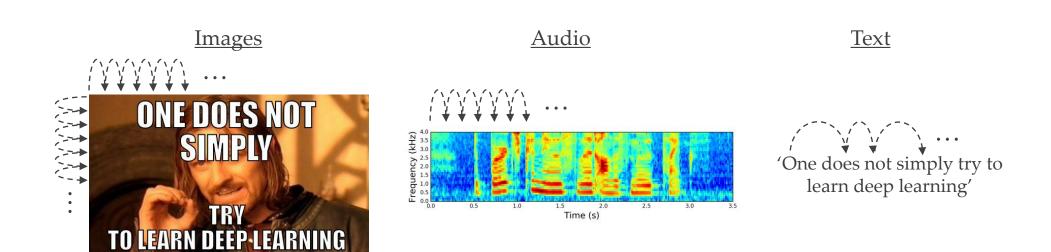
- Early autoregressive models
- Modern autoregressive models
- Normalizing flows
- Flow-based models

A map of generative models



Beyond independent dimensions

- o Often, in data there is either an order or we can make up an order
 - From a generation point of view, data dimensions depend on each other



Decomposing likelihood of sequential data

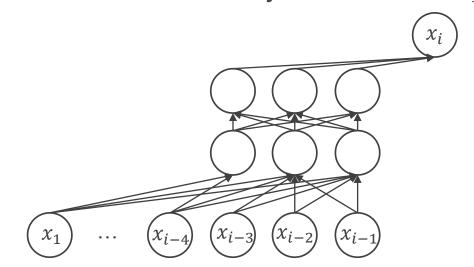
o If $\mathbf{x} = [x_1, x_2, ..., x_d]$ is sequential, $p(\mathbf{x})$ decomposes with chain rule of probabilities

$$p(\mathbf{x}) = p(x_1) \cdot p(x_2|x_1) \cdot p(x_3|x_1, x_2) \cdot \dots \cdot p(x_d|x_1, \dots, x_{d-1}) = \prod_{i=1}^{d} p(x_i|x_{< i})$$

- o If **x** is *not* sequential, we can assume an artificial order
 - e.g., the order with which pixels make (generate) an image
 - This can create artificial bias, however

Deep networks to model conditional likelihoods

- Model the conditional likelihoods with deep neural networks
 - Logistic regression (Frey et al., 1996), Neural nets (Bengio and Bengio, 2000)
 - *E.g.*, learn a deep net to generate one pixel at a time given past pixels
- The learning objective is to maximize the log-likelihood log p(x)
 - If each conditional is tractable, $\log p(x)$ is tractable
 - Model conditional probabilities directly and with no partition functions Z



Neural Autoregressive Density Estimation

- Inspired by RBMs but with tractable density estimation
 - Each conditional modelled with sigmoidal neural net like in RBMs
- o Parameter matrix W maps past inputs $v_{< i}$ to hidden feature h_i
- o Parameter matrix V generates pixel v_i given the hidden feature h_i

$$p(v_i|v_{< i}) = \sigma \left(b_i + (V^T)_{i,\cdot} h_i\right)$$
$$h_i = \sigma \left(c + W_{\cdot,< i} v_{< i}\right)$$

where *c* is a bias term

- Teacher forcing
 - $^{\circ}$ During training use ground truth past inputs $v_{< i}$
 - $^{\circ}$ During testing use predicted past inputs $\widehat{v}_{< i}$

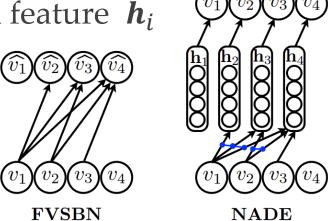


Figure 1: (Left) Illustration of a fully visible sigmoid belief network. (Right) Illustration of a neural autoregressive distribution estimator. \widehat{v}_i is used as a shorthand for $p(v_i = 1 | \mathbf{v}_{< i})$. Arrows connected by a blue line correspond to connections with shared or tied parameters.

Larochelle and Murray, Neural Autoregressive Distribution Estimation

Masked Autoencoder for Distribution Estimation

- Make an autoregressive autoencoder by setting each output x_i depend only on previous outputs $x_{< i}$
 - In autoencoders the output dimensions depend on 'future' dimensions also
- Implement this by introducing a masking matrix *M* to multiply weights

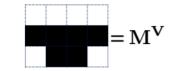
$$h(\mathbf{x}) = g(\mathbf{b} + (W \odot M^{W}) \cdot \mathbf{x})$$

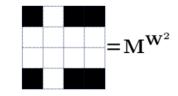
$$\hat{x} = \sigma(\mathbf{c} + (V \odot M^{V}) \cdot h(\mathbf{x}))$$

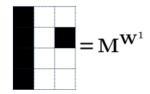
For the *k*-th neuron the mask column is $M_{k,d} = \begin{cases} 1 & m(k) \ge d \\ 0 & \text{otherwise} \end{cases}$

And m(k) is a integer between 1 and d-1

Masks







Germain, Gregor, Murray, Larochelle, Masked Autoencoder for Distribution Estimation

MADE architecture

